The generator matrix 1 0 0 0 1 1 1 X^2 1 1 X X^2+X+2 1 0 1 0 0 X^2 3 X^2+X+1 1 X^2+X 1 1 1 X^2 0 0 1 0 X^2+1 1 X X^2+1 3 X^2+X+1 X+1 2 X^2 0 0 0 1 1 X^2 X+1 X^2+X+1 X+2 X^2+1 X X+3 X^2+X generates a code of length 13 over Z4[X]/(X^3+2,2X) who´s minimum homogenous weight is 9. Homogenous weight enumerator: w(x)=1x^0+222x^9+1447x^10+5468x^11+14658x^12+21828x^13+14922x^14+5360x^15+1347x^16+270x^17+7x^18+4x^19+2x^20 The gray image is a code over GF(2) with n=104, k=16 and d=36. This code was found by Heurico 1.16 in 4.34 seconds.